Maximal Arithmetic Progressions in Random Subsets

نویسندگان

  • Itai Benjamini
  • Ariel Yadin
  • Ofer Zeitouni
چکیده

Let U (N) denote the maximal length of arithmetic progressions in a random uniform subset of {0, 1}N . By an application of the Chen-Stein method, we show that U −2 log N/ log 2 converges in law to an extreme type (asymmetric) distribution. The same result holds for the maximal length W (N) of arithmetic progressions (mod N). When considered in the natural way on a common probability space, we observe that U / log N converges almost surely to 2/ log 2, while W / log N does not converge almost surely (and in particular, lim sup W / log N ≥ 3/ log 2).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the maximal length of arithmetic progressions∗

This paper is a continuation of Benjamini, Yadin and Zeitouni’s paper [4] on maximal arithmetic progressions in random subsets. In this paper the asymptotic distributions of the maximal arithmetic progressions and arithmetic progressions modulo n relative to an independent Bernoulli sequence with parameter p are given. The errors are estimated by using the Chen-Stein method. Then the almost sur...

متن کامل

A note on the length of maximal arithmetic progressions in random subsets

Let U (n) denote the maximal length arithmetic progression in a non-uniform random subset of {0, 1} n , where 1 appears with probability pn. By using dependency graph and Stein-Chen method, we show that U (n) − cn ln n converges in law to an extreme type distribution with ln pn = −2/cn. Similar result holds for W (n) , the maximal length aperiodic arithmetic progression (mod n). An arithmetic p...

متن کامل

ON THE MAXIMAL NUMBER OF THREE-TERM ARITHMETIC PROGRESSIONS IN SUBSETS OF Z/pZ

Let α ∈ [0, 1] be a real number. Ernie Croot [3] showed that the quantity max A⊆Z/pZ |A|=⌊αp⌋ #(3-term arithmetic progressions in A) p tends to a limit as p → ∞ though primes. Writing c(α) for this limit, we show that c(α) = α/2 provided that α is smaller than some absolute constant. In fact we prove rather more, establishing a structure theorem for sets having the maximal number of 3-term prog...

متن کامل

ON DISTRIBUTION OF THREE-TERM ARITHMETIC PROGRESSIONS IN SPARSE SUBSETS OF Fp

We prove a version of Szemerédi’s regularity lemma for subsets of a typical random set in F p . As an application, a result on the distribution of three-term arithmetic progressions in sparse sets is discussed.

متن کامل

On the Distribution of Three-Term Arithmetic Progressions in Sparse Subsets of Fpn

We give a short proof for the following result on the distribution of three-term arithmetic progressions in sparse subsets of Fp : for every α > 0 there exists a constant C = C(α) such that the following holds for all r ≥ Cp and for almost all sets R of size r of Fp . Let A be any subset of R of size at least αr, then A contains a non-trivial three-term arithmetic progression. This is an analog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007